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The general problem of potential flow past a slender body of revolution is con- 
sidered. The flow incident on the body is described by an arbitrary potential 
function and hence the results presented here extend those obtained by Handels- 
man & Keller (1967 a). The part of the potential due to the presence of the body 
is represented as a superposition of potentials due to point singularities (sources, 
dipoles and higher-order singularities) distributed along a segment of the axis 
of the body inside the body. The boundary condition on the body leads to a 
linear integral equation for the density of the singularities. The complete uniform 
asymptotic expansion of the solution of this equation, as well as the extent of 
the distribution, is obtained using the method of Handelsman & Keller. The 
special case of transverse incident flow is considered in detail. Complete expan- 
sions for the dipole moment of the distribution and the virtual mass of the body 
are obtained. Some general comments on the method of Handelsman & Keller 
are given, and may be useful to others wishing to use their method. 

1. Introduction 
We wish to consider the general case of potential flow past a slender body of 

revolution. The results presented here extend those obtained in Handelsman & 
Keller (1 967 a) ,  where only axially symmetric flows past the body were considered. 
They represented the disturbance potential q5b due to the presence of the body 
as a superposition of potentials due to point sources distributed along a segment 
of the axis of the body inside the body. They then presented a special method for 
obtaining the uniform asymptotic solution of an integral equation resulting 
from the boundary condition for the problem. Their method (see also Fraenkel 
1969) has been used by obhers, e.g. Tillett (1970), to describe Stokes flow past a 
slender body of revolution and a,lso by Geer & Keller (1968) and Geer (1974) to 
solve some two-dimensional flow problems. 

To illustrate the method used here, we first consider in detail the case when 
the incident flow, which in general is described by a potential $O, is a uniform 
flow transverse to the axis of the body. For this case, the part of the potential 
due to the presence of the body is represented as a superposition of potentials 
due to point dipoles oriented in the direction of the flow and distributed along 
a segment of the axis of the body inside the body. The boundary condition on 
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the body then leads to a linear integral equation for the dipole strength density. 
Using the method of Handelsman & Keller, the complete uniform asymptotic 
expansion of the solution of this equation, as well as the extent of the distribu- 
tion, is obtained. Complete expansions for the total dipole moment of the dis- 
tribution and the virtual mass of the body are then found. 

These results are then generalized to the case of a general incident flow des- 
cribed by an arbitrary potential $O. The corresponding disturbance potential 
$b is represented as a superposition of potentials due to appropriate (in general, 
higher-order) singularities distributed along a segment of the axis of the body 
inside the body. Again the boundary condition on the body leads to an integral 
equation, which can be solved using the method of Handelsman & Keller. It 
is interesting that the extent of the distribution for all of these higher-order 
singularities is the same as for the source distribution in the axially symmetric 
case. 

Finally, some general comments and observations are made about the general 
method of Handelsman & Keller, and may be helpful to others who would like 
to use their method to solve related or other problems. 

2. Formulation of the problem 
We introduce cylindrical co-ordinates (r,  0, z )  in the usual way, wit'h the z 

axis coinciding with the axis of the body. Let the equation of the surface of the 
body be r = e[S(z)]*, 0 < x < 1, where maxS(z) = 1. We shall assume that X(z) 
is analytic on 0 < x < I with S(0)  = 0 = #(I) and can be expanded in power 
series about the end points as follows: 

m 0) 
c, = - 

n = l  n !  ' X(z) = c. c,zn, 

( - l)nS(n)( 1) m 

S(z) = 2 dn(l -2)") a, = n = l  n !  

We shall assume that c1 =l= 0 =k d,, i.e. that the radii of curvature at  the ends of 
the body are non-zero. 

We now seek a function $b which is harmonic in the region outside the body 
such that $0 + $b has vanishing normal derivative on the body. Here $0 is given 
and is harmonic in a neighbourhood of the body, while $b must vanish at infinity. 
$0 represents the potential of the oncoming stream and hence, to begin with, 
we set $0 = r cos 6. 

We now wish to represent $b as a superposition of potentials due to point 
dipoles distributed along a segment of the axis inside the body. Thus we set 

where ,u(g,e) is the unknown dipole strength density. Here a(€ )  and P(e) ,  which 
determine the extent of the dipole distribution, must be found in addition to 
p(fl,s). They must satisfy the inequalities 0 < a(€) < @(e) < 1. $b as defined by 
(2.3) is harmonic outside the body and vanishes at  infinity. The condition that 
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vanish on the body, when used with (2.3), the normal derivative of 
becomes 

Equation (2.4) is a linear integral equation, from which we shall determine 
p(6, E ) ,  as well as a(€)  and P ( E ) .  

3. Asymptotic solution of the integral equation 
Before we solve (2.4), we look first at an instructive example. If the slender 

body is the ellipsoid of revolution given by r = E[Z( 1 - 2)]&, the problem outlined 
in $2 can be solved exactly (see Lamb 1932, pp. 152-153). Once the solution is 
known, the dipole strength density can be recovered by a method similar to 
that used in Geer (1974). The result for the ellipsoid of revolution is 

(3.1) 

where f ( E )  is a function of E alone and a(€) and P ( E )  are the foci of the ellipsoid. 
Thus, in particular, we see that p vanishes at a(€)  and P ( E ) .  

Using this example as a guide, we look for a solution for p(z, E )  of (2.4) of the 
form 

(3.2) 

A x ,  4 = f (4  ( A 4  - 2) (2 - 44) ,  

PU(2, 4 = ( P ( 4  - 4 (2 - a ( E ) ) f ( z ,  d ,  

where f (z ,e)  is to be found. We shall assume that f is a regular function of z.  
If we substitute (3.2) into (2.4) and then expand the right side of (2.4) asympto- 
tically about E = 0, using the method of Handelsman & Keller, and not taking 
into account the dependence off on E ,  (2.4) becomes 

00 22(2 - 1) f (2, E )  €-2 + I: @ ( L j  + log ( E )  Nj) f ( z ,  €). 
S ( 4  ,=0  

4n - (3.3) 

Here the L, and Ni are linear operators which are defined explicitly in appendix A. 
Now (3.3) suggests that we look for an asymptotic expansion for f ( z ,  E )  of  the 

form 

f ( 2 , E )  N € 2  c 2 € 2 " ( l o g E ) ~ f n , m ( 2 ) .  
n=Onz=O 

(3.4) 

Here the f n , ,  are functions of 2, independent of E ,  which are to be determined. 
Substituting (3.4) into (3.3) and then equating the coefficients of like terms of 
the form e2n on each side of (3.3), we obtain the following results: 

f0,o = - 2TfJ(Z)/Z(1--4, (3.5) 

k 2 1,  1 6 m 6 k. (3.7) 
52-2 
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From (3.5)-(3.7) we see that the f , , ,  can be determined recursively. Also, 
since fo,o is a regular function of x on 0 Q z Q 1, it follows from (3.6) and (3.7) 
that all of the f n , ,  will be regular on 0 < z Q 1 if each LjP(z)  and N j P ( z )  is 
regular whenever P(z)  is regular. Using the explicit expressions for the operators 
Lj  and Nj in appendix A, this last requirement leads to exactly the same require- 
ments on a(€)  and P(s) as those in Handelsman & Keller. Hence, a(.) and P(e)  
are the same as the functions found in Handelsman & Keller and their leading 
terms are given by 

a(e)/cl = (=&)2-c2(%E)4+ (clC3+2Ci) (C;C,+ 7C1CzC3+5Cg) (&)8+O(~10)  (3.8) 
and (1 -P(e))/d1 = ( % E ) ~ - ~ ~ ( & E ) ~ +  (did3+2dz) ( 4 ~ ) ~  

- (dqd,+7d1dzd3+5d;) (&)s+O(~lO). (3.9) 

Using the formulae (A 3) and (A 4) of appendix A, we find from (3.6) and 
(3.7) that 

J 

(3.10) 

d 
- 2f;&) (1 - 22)  J ( z )  +- dz [z( l -  2) J(z)l]}, (3.11) [ 

where J ( z )  = log [42( 1 - ~ ) / f l ( z ) ] .  

they yield the asymptotic expansion of p(z, E )  up to terms of order e6(loge)Z. 
When (3.5), (3.10) and (3.11) are used in (3.4) and then (3.4) is used in (3 .2) ,  

4. Dipole moment and virtual mass 

bution of dipoles is given by 
From (2.3) and (3.2), it follows that the total dipole moment D of our distri- 

Inserting (3.4) into (4.1) and then expanding the resulting integrals in Taylor 
series about E = 0, we find the following expansion for D :  
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Once the dipole moment D has been found, we can compute the virtual mass 
M of the body by using the formula of Schiffer & Szego ( 1  949) : 

M = 4npDU- l -pV .  (4 .3)  

Here p is the density of the fluid, V is the volume of the body and U is the speed 
of the incident stream at infinity. Setting U = 1 and using (4 .2) ,  (4.3) becomes 

+o(E6(logE)2). (4.4) 

In  (4.4),  fi,o andf,,, are given by (3 .10)  and (3.11),  respectively. 

5. Body in a non-uniform flow field 
We can now easily generalize our results of the previous sections to the case 

of a general oncoming flow. Let the oncoming flow be described by the velocity 
potential #O. We assume that #O is harmonic in a neighbourhood of the body, 
so that, for 0 < z < 1 and for small r,  #O can be expanded in a series of the form 

m 

#O(r, 8, x )  = &4,(r2, z )  + {rnAn(r2, x )  cosne +rnBn(r2, z )  sinno). (5 .1)  
n = l  

In  (5.1), each A ,  and B, is a regular function of r2 and z in a neighbourhood of 
r = 0 , O  < z < 1.  By superposition, we need consider only the case when #O has 
the form of one of the terms in the series (5 .1)  and hence we set 

#O(r,O,z) = rn$(r2,x) cine (n 2 0 ) ,  (5.2) 

where $ is a prescribed function, regular in r2 and x near r = 0 and 0 < z Q 1. 
We represent the corresponding #b as a superposition of potentials due to appro- 
priate (higher-order) singularities distributed along a segment of the axis inside 
the body. Thus, we set 

In  (5.2), a(€) ,  P(e )  and f (5, E )  play the same role as in 532 and 3 above. #b as 
defined by (5 .3)  is harmonic outside the body and vanishes at infinity. The 
requirement that the normal derivative of #O + #b vanish on the body, when 
used with (5.2) and (5.3),  becomes 

2n$(e21!3(z), z )  + 4e28(z) - a4 (~2X(z),  z )  - E ~ X ' ( Z )  - a$ (s2X(z), z )  
ar2 az 

1)s2X(z )+(2n+  1 ) ~ 2 X ' ( z )  ( z - c )  

x (5- 44)n (A4 - E)"f(5, 4 a. 
( E W ( Z )  + (2 - g-)2)"+% 

(5.4) 
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Equation (5.4) is a linear integral equation from which we can determine a(€),  
P ( E )  andf(6,e). The case n = 0 has been treated by Handelsman & Keller ( 1 9 6 7 ~ )  
and the case n = 1 with I+? = 1 has been treated above. 

To findf(6, E )  ,we again expand both sides of our integral equation asymptotic- 
ally about E = 0 without taking into account the dependence off on E .  The left 
side of (5.4) can be expanded directly in a Taylor series about E = 0 while the 
right side again can be expanded in a series of terms involviiig powers of e2 
alone and powers of E~ multiplied by loge. In  this way (5.4) becomes (for n 2 1) 

a, 1 
277 

- - - ~ - 2 n  

In  (5.51, the zj and 
method of Handelsman & Keller and 

are linear operators which can be determined using the 

Equation (5.5) suggests that we look for a solution for f ( x ,  E )  of the same form 
as (3.4), but with the factor in front replaced by eZn. If this expansion is 
inserted into (5.5) we are led to a system of recursive equations simi1a.r to (3.5)- 
(3.7). In particular, we find that 

A careful examination of the form of the operators E j  and 4. and the require- 
ment that E j F ( z )  and q . F ( z )  be regular whenever F(z )  is regular leads to the 
same requirements on a(€) and P ( s )  as in $3. This is done by integrating by pa& 
several times the integrals which appear in zj and I?j and then showing that 
they are in fact just certain linear combinations of integrals of the same type 
as those which appear in Lj and iVj in $3,  Hence, a(€)  and P(s)  are again exactly 
as determined in Handelsman & Keller and the leading terms in their expansions 
are again given by (3.8) and (3.9). (See appendix B.) 

6. Discussion of the method 
The method of Handelsman & Keller ( 1 9 6 7 ~ )  has now been used by several 

authors (see references above and also Handelsman & Keller 19676) to obtain 
the uniform asymptotic expansion of the solution of a linear integral equation 
in which the kernel becomes singular as E approaches zero. We can now make 
some general observations about this method. 

First, for three-dimensional problems involving a slender body of revolution, 
the density of the distribution of singularities (i.e. the primary unknown in our 
integral equation) can be assumed to be a regular function of x for 0 6 x 6 1, 
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while it is not regular in E near E = 0, since terms involving logs appear. From 
(5.4), we see that, as s approaches zero, the kernel behaves like the sum of terms 
which are O ( ( Z - [ ) - ~ ~ - ~ )  and O ( E ~ ( Z - [ ) - ~ ~ - ~ ) .  For n = 0 this singularity is not 
‘too severe’ and the method works fine. However, for n 1, this singularity 
apparently becomes too strong for the method to work and hence an adjustment 
in the form of the solution [e.g. (3.1)] must be made. More precisely, we must 
assume that the solution vanishes at each end point of its distribution, like the 
distance from the end point to the nth power [see (5.4)]. If this assumption is 
not made, the method will simply not yield a uniform asymptotic solution of the 
integral equation (see appendix B). 

Second, for two-dimensional problems (Geer 1974; Geer & Keller 1968), the 
denominator in the kernel looks just like ( z  - 6)s +e2S(z) and, in particular, not 
this quantity raised to a fractional power. As e approaches zero, the kernel 
involves terms which are O([-z)- l  and O ( E ( X - [ ) - ~ ) .  In  this case, only integer 
powers of E appear in the expansion of the solution, but the solution is not it 
regular function of z.  In  particular, near each end point of its distribution, the 
solution blows up like the inverse square root of the distance from the end point. 
Again, unless the form of the solution is modified to take into account this 
singularity, the method will not yield a uniform expansion of this solution. 

Finally, it is interesting just to note that the extent of the distribution (i.e. 
the a(€)  and P(s))  is exactly the same for all the two- and three-dimensional 
problems mentioned above which involve a symmetric body. The only exception 
here is the asymmetric two-dimensional problem treated in Geer (1974), where 
a and P are modified slightly. The full significance of this observation escapes 
this author at  present, but at least we should not be surprised when it happens 
again. 

The author wishes to express thanks to Joseph B. Keller of N.Y .U. for suggest- 
ing this problem and for offering helpful suggestions concerning its solution. 

Appendix A. The operators L, and A$, 
In  this appendix we present the formulae for the linear operators L, and Ni 

which appear in the expansion (3.3). More precisely, they are the coefficients in 
the expansion of the operator 

2 4  1 - 2) m 

N- E + P ( Z )  + 2 @(L, +log (€) N,) F(z) ,  
S(z)  i = O  

where F(z)  is assumed to be a regular function of z on 0 < z 6 1 and is independent 

The expansion of I ( z ,  c) follows closely along the lines given in Handelsman & 
Keller. In  particular, it is again necessary to break up the interval of integration 
into an interval from a(€)  to z and one from z to P(E). Several of the resulting 

ofs. , 



824 J .  Geer 

integrals can be simplified by integration by parts and noting that the integrand 
vanishes at a(€) and p(e). Assuming that a(€) and p(s)  have expansions of the 
form 

m 

where a. = 0 and Po = 1 ,  the final form of the operators is the following : 

and 
i - 1  d 
k=O dz 

N,(F(z)) = 2 P 2 k + 2 ( z )  - Dik_'k'.l(z) 

'2p+1-2k,j-k + T2~+l-2k , l -k  
m i n ( j , p - Z + O  

k=O (2p + I - 2k)  (2p + I -  2k - 1 )  

j -  '1, S '2234-8-2k--1, j-k-b' + q , S  T213+1-2k-1, j-k-s 

- 2 0  ( 2 p + I - 2 k - 1 ) ( 2 p + I - 2 k - 2 )  
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k = 0,) 

The constants ai and b ,  are defined by 

a. = 1,  a .  = ~ 1, 
3 j! x 2i 

( -  l ) i  x 3 x 5 x ... x ( 2 j +  l) ,  

j = 0, 

j not an integer. 

Here [n] denotes the greatest integer not exceeding n. The Dpz(z)  are defined by 
the right side of (A 7), except that KT is replaced by ET, where 

We note that all of these expressions will be regular on 0 < z < 1 whenever 
P(z) is, provided that the functions g&) and hi@) are regular on 0 < z < 1,  This 
leads to the same requirements on a(.) and P ( e )  as in Handelsman & Keller 
( 1 9 6 7 ~ ) .  The operators xi and mi which appear in (6 .5 )  have the same general 
form as the operators Li and Nj above, although the individual expressions are 
longer and more involved. 

Appendix B 
In this appendix we outline a proof that the integral operator on the right side 

of (5.4) has a regular expansion if a(.) and P(E)  are chosen in exactly the same 
manner as in Handelsman &, Keller ( 1 9 6 7 ~ ) .  More precisely, since the integral 
operator in (5.4), operating on a regular function F(z) ,  independent of E ,  can be 
written as 

W,"(z, e )  - nW$(z, E )  

it  is sufficient to prove that each Wp(z,e) ,  j = 0,1,  n = 0, 1 ,  ..., has a regular 
expansion if the U ( E )  and P(s) are chosen as in Handelsman & Keller. 
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Our proof will be by induction. From the work presented in Handelsman & 
Keller and in appendix A above, it follows that W:(z, E )  and W:(z, E ) ,  j = 0, 1,  all 
have regular expansions. Now suppose that Wg, Wi ,  ..., W?, j = 0, 1, all have 
regular expansions with a(€) and P(e)  chosen as in Handelsman & Keller. We 
now show that W;+l and W?+l have regular expansions by showing that they 
can be expressed as certain linear combinations of the Wjn, j = 0, I, n = 0, 1 ,  . . . , k.  
Using the fact that 

we integrate by parts the expression for Wf+l from (B 2 )  and obtain 

In obtaining (B 3) we have used the fact that the integrand vanishes a t  6 = a(€) 
and 5 = P(B).  By our induction hypothesis on W;, the right side of (B 3) has a 
regular expansion and hence so does W:+l(z, e). 

To show that W,“+l(x, e )  has a regular expansion, we note that 

where the Cj are certain constants. We now integrate by parts the expression 
(B 2) with ,j = 0 and n = k + 1 and obtain 

x (t;-a(.))“P(4 -5)”(k+ l)m-) (44 +P(e)-2E) 

+ (P(4  - 5) (5 - 44) P’(E)} d5. (B 5 )  

Equation (B 5) expresses W$+l as a linear combination of integrals of the form 
of W$(z, e) for j = 0,1, . . . , k.  But now using the fact that we can write 

and then repeating this process as often as necessary, we can express each 
W$(z, e) as alinear combination of integrals of the form Wg and W& for s = 0,1, . . . , j. 
Thus, ultimately, since the summation in (B 5) extends only up to j = k ,  the 
right side of (B 5) can be expressed as a linear combination of integrals of the 
form of Wg and W;l, n = 0,1, ..., k.  Hence, by our induction hypothesis, Wt+l 
has a regular expansion. This completes our proof. 

We should now make one final observation that if the integrand does not 
vanish in (5.4), i.e. if the factor @‘(e) - -<)n(&-a(~))~  is omitted, we cannot make 
the resulting expansions regular by any choice of the constants an and /In in 
(A 2). To illustrate this point, if we look a t  W:(z, E )  with the factor 

(P (4  - 5) (5 -a(€)) 
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removed we can integrate this expression by parts and express W: in terms of 
W: and the terms 

Using the expansion (A 2) it follows that the expansions of the terms in (B 6) 
will be singular at z = 0 or x = 1, unless they vanish identically. That is, no 
choice of the constants a, and /3, can prevent these singularities if 

Hence, it appears that our particular choice of a(€) and P(E) and the requirement 
that our density functions vanish at  a(€) and p(s )  are both necessary and suffi- 
cient conditions for our integrals to have regular expansions. 

R E F E R E N C E S  

FRAENKEL, L. E. 1969 Proc. Camb. Phil. SOC. 65, 209, 233. 
GEER, J. F. 1974 S.I.A.M. J .  AppZ. Math. 26 (to appear). 
GEER, J. F. & KELLER, J. B. 1968 S.I.A.M. J .  AppZ. Math. 16, 75. 
HANDELSMAN, R.  A. & KELLER, J. B. 1967a J .  Fluid Mech. 28, 131. 
HANDELSMAN, R.  A. & KELLER, J. B. 1967b S.I.A.M. J .  AppZ. Math. 15, 824. 
LAMB, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press. 
SCHIFFER, M. & SZECO, G. 1949 Trans. Am. Math. SOC. 67, 130. 
TILLETT, J. P. K. 1970 J .  Fluid Mech. 44, 401. 


